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of the 

Quantum shot noise consists of individual pulses which contribute time-depen- 
dent (operator) "potentials" toward a total potential V(t). The averaged quan- 
tity (Jexp]"~0dt '  V(t')) in general can no longer be calculated explicitly, in 
contrast to the classical case, and expansions are of interest. Noncommntative 
cumulant expansions are not directly applicable if the correlation functions of 
V(t) have singularities, as happens in applications. It is shown here that these 
expansions, when applied to quantum shot noise, can be partially summed to 
give expansions in powers of the pulse density v. Three types of such expansions 
are established explicitly, and for two of them the derivation is direct. For one 
of them the first-order approximation is closely connected to the so-called 
unified theory of spectral-line broadening. 

KEY WORDS:  Operator Poisson process; singular correlation functions; 
noncommutative cumulant expansions; partial summation. 

1. I N T R O D U C T I O N  A N D  M A I N  RESULTS 

The familiar classical shot noise, ~2) denoted by S(t), is a sum of scalar 
pulses h ( t - r k )  occurring with density v on the time axis, 

S(t )  = ~" h(t  - ~ )  
k 

In quantum situations, on the other hand, single pulses contribute operator 
functions ("potentials"), which usually do not commute for different times. 
A simple example of such a situation can be given by a hydrogen atom at 
the origin and a narrow beam of classical particles passing the atom at a 
fixed distance; each particle is assumed to contribute a potential pulse to 
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the total potential of the electron, and in general these pulses need not 
commute in the interaction picture. (3) A generalization of this example 
would be a hydrogen atom in a plasma, and this is just the situation 
studied in the theory of spectral-line broadening. This is no longer pure 
shot noise, since each pulse depends on additional parameters. Our results 
on the pure case can, however, be applied to spectral-line broadening, as 
explained elsewhere. (4) 

In the quantum case we denote by V(t) the sum of all single-pulse 
contributions. Of interest in many applications is the quantity 

( If ]) (U(t, t o ) ) -  Y-exp dt'V(t') (1.1) 
0 

which is a generalization of the well-known random frequency 
modulation. (s) Note that (U(t, to)) is the averaged solution of the 
stochastic differential equation 

(7= VU (1.2) 

In the scalar case this can be calculated explicitly in terms of single-pulse 
quantities3 2) In the quantum case this is in general no longer possible, and 
we therefore investigate expansions in the pulse density v. To do this, one 
might try to use our companion paper (1) (hereafter referred to as I), where 
different types of noncommutative cumulant expansions for stochastic dif- 
ferential equations as in Eq. (1.2) were investigated. However, depending 
on the particular form of the single pulse shape, there may be singularities 
in the correlation functions of V, as happens in the theory of spectral-line 
broadening. Then the cumulant expansions of Eqs. (I.1.5)-(I.1.7) are not 
applicable, at least not directly. Surprisingly, though, it turns out that for 
quantum shot noise these cumulant expansions can be partially summed 
and the singularities then disappear. This will now be explained in more 
detail. 

1.1. Quantum Shot Noise 

We consider "particles" arriving randomly with average pulse density v 
at some location. A particle arriving at time v contributes a time-dependent 
matrix or operator "potential" ~0(t;~), a single "pulse." The total 
"potential"--possibly nonstationary--is then given by 

vlt) = Z ~o(t; ~k) 
k 
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where a possible factor of i in Eq. (1.2) has been absorbed in q~. As usual, 
the arrival times rk are assumed to be uniformly distributed either over a 
finite time interval of length T or, in the limit, over the whole real axis. We 
then have, with N/T= v, 

~ r / 2 d r k  
( V ( t ) ) =  lim 3 T/2 T r 

N ~ o o  1 

= v f dr ~o(t; r) (1.3) 

In a similar way one obtains 

(V(tl) V(t2) > = v f dr ~o(tl ; r) q~(t2 ; r) 

+v2fdrlqg(tl;rl)fdr2q~(tz;r2) (1.4) 

where the first term arises from the summation over equal pulses, as 
explained in the Appendix. It is similarly shown there that the correlation 
function (V( t l ) . . .  V(tn)) is a polynomial in v of nth degree starting with 

v f dr ~o(tl ; r ) . . .  ~p(t, ; r) (1.5) 

It is clear that, depending on the behavior of r r) as a function of z, e.g., 
for Irl ~ ~ ,  there may be singularities in specific correlation functions. In 
such a case we assume q~ to be replaced by a regularized version and then 
remove the regularization in the final expressions. 

1.2. Density Expansion through an Integral  Equation 

For a general stochastic differential equation as in Eq. (1.2), an 
integral equation for (U(t, to)) was studied in I, 

(U(t, to ) )=l+ dsG~(t,s)(g(s, to)) (1.6) o 
The kernel G~ is given in terms of W-cumulants by Eq. (I.1.5), 

Gl(t, s)= l J-exp [f: ds' V(s') 1 V(s)) w 

~f:  fs -n-I = ds1 "'" dtn (V( / I ) . . .  V(tn) V(s)) w (1.7) 
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From the recursive relation for ( . ) w ,  Eq. (I.1.4), or from the explicit 
formula (I.2.16), we find by means of Eq. (1.5) 

(v(tl)... v(t.) V(s))W=v f dr~o(t~;r)...q~(s;r)+O(v2) (1.8) 

where O(v 2) contains higher orders of v. We insert this into Eq. (1.7). Then 
a partial summation of all terms proportional to v can be performed, 

Gi(t, s)= ~ fstdtl ... fj"-~ dtn 
0 

• [v f dz ~p(tl ; Z) . ..~p(tn; z) cp(s; z) + O(v2)] 

=vfdzYexp[ffdt '~o(t ' ;z)]q)(s;z)+O(v 2) (1.9) 

Partial summation of the v n terms can also be performed in principle-- 
although in Section 4 we will use a more direct method-- to  give a power 
series in v, 

Gi(t, s) - Gn(t , s)v n (1.10) 
1 

where, by Eq. (1.9), G1 is given by 

 exp ,111, 

Terminating the expansion of G1 at n--1,  2,... will lead, via the integral 
equation (1.6), to different approximations for (U(t, to)). 

In the stationary case a single pulse and G~ as well as Gn are of the 
form 

~o(t; T) - q~( t -  3) 
(1.12) 

Gi(t ,s))-Gi(t-s) ,  Gn(t,s)=Gn(t-s) 

In this stationary case the integral equation (1.6) is immediately solved by 
Laplace transform, denoted by ~p and a caret: 

~ {  ( U(t, 0))  } = [p  - p(~x] -1 (1.13) 

where t is a symbolic variable only. For the first-order approximation to 
this we note that 
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and therefore, by Eq. (1.3), 

(1.14) 

Inserting this for p(~ into Eq. (1.13) gives the first-order approximation. 
This is the same as the so-called "unified theory" of spectral-line 
broadening, ~6) except for an averaging over additional parameters, as will 
be explained in more detail elsewhere. (4) 

As regards singularities, G1 and also Gn are much better behaved then 
the correlation functions of V. This is particularly evident if one writes G1 
of Eq. (1.11 ) as a derivative, 

} ,1,5  
Since for higher order corrections the partial summations become 

increasingly tedious, we will use another method in Section 4 to determine 
G, for arbitrary n [cf. Eq. (4.16)]. The second order, G2, is written out in 
Eq. (4.17) and it contains correlations from two pulses, while G~ contains 
only a single pulse. 

1.3. Density Expansion through a Differential Equation 

A differential equation for (U(t, to)}, 

d 
dt ( U(t, to) ) = K(t, to)( U(t, to)) (1.16) 

was studied by Kubo, (5) van Kampen, (7) and in I. The K is given by 
Eq. 0.1.7) in terms of K-cumulants, 

K(t, to)= l V( t )Y  exp [;'odt' V( t ' ) l )  ~ 

-= ... dt n (V(t) V(tl)...  V(t.)) K (1.17) 
1 o 

From the recursive relation for ( .  }K, Eq. (I.1.8), or from the explicit for- 
mula (I.3.9), we find by means of Eq. (1.5) 

(v(t.) V(tl)... V(t.))K=vf dr162 2) (1.18) 
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Inserting this into Eq. (1.17), we can perform a partial summation of all 
terms proportional to v to yield 

Partial summation of the v n terms gives in principle a power series in v, 

K(t, to) = ~, K,(t, to)W (1.20) 
1 

where, by Eq. (1.19), 

Km(t, to) = dr ~0(t; r) ~-- exp dt' ~o(t'; z) 
- - o 2 )  0 

- --d-d f dz { J  exp I~j o d t  

This gives the first-order approximation 

dt ' (p( t ' ; r )] - I  t (1.21) 

(U(t, t 0 ) ) ~  J exp dt' Kl(t', to) (1.22) 
L" to 

For commuting single pulses this result is already the exact solution, since 
in this case we will show Kn = 0 for n/> 2. Time-ordering can then be 
omitted in Eq. (t.22), which then agrees with the well-known expression for 
scalar shot noise/2) 

The general K, will be determined explicitly by another method in 
Section 3. As regards singularities, the K, are again better behaved than the 
correlation functions of V. The KI depends on a single pulse, while K n 
depends on n pulses. 

In the stationary case K a and GI are identical, as seen from Eqs. (1.21) 
and (1.15), but the corresponding approximations to (U(t,O)) are in 
general different. For example, if q~(t; z) is commutative, the first-order 
approximation to the integral equation does not give the exact solution. 
The particular situation dictates which of the two expansions is better 
adapted to the original problem. For example, if the Fourier transform of 
(U(t, 0 ) )  is close to a Cauchy distribution, the integral equation and an 
approximation of its kernel GI might be more appropriate. 

1.4. O v e r v i e w  of Remaining Sections. General izat ions 

In Section 2 we establish the starting point for Sections 3 and 4. In 
addition, we derive a generalized Dyson series for (U(t, 0)) ,  with z as an 
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auxiliary time variable. To this series the K-cumulant expansion for 
generalized Dyson series of I can be applied directly, giving yet another 
power series in v. All three types of expansions are treated as formal power 
series. Convergence properties are not studied here. In Section 3 the explicit 
form of Kn is determined, and in Section 4 a recursion relation for Gn is 
derived, which is solved explicitly for the stationary case. In the Appendix 
the correlation functions of V(t) are explicitly given. 

In applications the single pulse ~o may depend on additional variables, 
such as velocity or charge, over which one also has to average. If these 
additional random variables are independent of the arrival times, then all 
results can be caried over. The main change is that integration over r is 
replaced by an integration over r and the additional variables with 
appropriate weights. This will be exemplified for spectral-line broadening in 
a forthcoming paper. ~4) 

2. PREREQUISITES. GENERALIZED DYSON SERIES FOR 
Q U A N T U M  SHOT NOISE 

2.1. Preliminaries 

For shot noise with pulse density v and arrival times distributed 
uniformly over the real axis the probability for n particles to arrive in a 
time interval of length T is 

Pn(T) = 1 (vT) ~e-vr (2.1) 

Let z I ..... rn be arrival times and let 

U(t, to; rl,..., rn) := J exp dt' q~(t'; ~)  (2.2) 
0 i 

Note the symmetry in rl ..... %. We let [%, ~] be a large, but finite interval 
and denote by (U(t ,  to)lZo, z )  the expectation of the solution of Eq. (1.2) 
under the condition that the particles arrive in [%,~] .  Then, with 
T : = z - %  and by Eq. (2.1), 

(U(t, to)l to, T) 

= e - ~ T I 1  + 

= e - ~ T [ 1  + 

~176 1 -* . . (~dz.  __7(vT),e_Vr [ d% ~n:  % T "  40 T U(t, to;zl,...,%)] 

1 ~" ,o,~3" d"r U(t, to; zl  ..... r , )  (2.3) 
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We are interested in the limit [z, z] ~ ~, T ~  ~ .  This limit cannot be 
directly performed, since e x p ( - v T ) ~ 0  and the integrals diverge. 
Nevertheless, Eq. (2.3) can be used to determine K,(t, to) in a neat way, as 
shown in Section 3. For the determination of G,(t, s), however, we need the 
explicit limit T -  0% and we show in Section4 that with a trick it can 
indeed be performed. The remaining part of Section 2 is a special case of 
results in ref. 8. It is not needed for the rest of the paper, but is of indepen- 
dent interest. 

2.2. Cumulant Expansion for Generalized Dyson Series 

By symmetry, the integrals in Eq. (2.3) can be restricted to time- 
ordered domains, 

( U(t, to)] %, c )  

=e -vr  1 + ~  &l  dz2"'" d% vnU(t, to;rl  ..... %) (2.4) 
1 0 0 0 

We now treat t and t o as fixed parameters and c as (auxiliary) time. Then, 
by Eq. (2.4), 

F(c, %):=eV(~-~~ to)[Co, c)  (2.5) 

is a generalized Dyson series to which we can apply the K-cumulant expan- 
sion for generalized Dyson series of I. Hence, by Eqs. (I.1.14) and (I.1.15), 
F satisfies 

d 
~ F ( c ,  Co)= KDy(C, %)F(z, %) (2.6) 

where KDy is a power series in v, 

~ KDy(C, %)=vU(t ,  to; c) + ~  v n+x ... ~"-t de, 
1 0 

x UK(t, to; z, cl,..., %) (2.7) 

Here the U K are K-cumulants with respect to c, cl,..., %. From Eq. (2.6) 
one obtains 

0 
,~ ( u( t ,  to) t ~o, ~ ) = (KD, - v ) (  U(t, to)l ~o, ~)  (2.8) 
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The initial condition is 

(U(t, to)l To, To~ = 1 

719 

and the solution of Eq. (2.8) is a z-time-ordered exponential, 

(U(t, to)lro, T)=~-~,ex p v dr' [KDy-- v] (2.9) 
o 

Now the limit -To,  r--* oo can be performed and one obtains (U(t, to)). 
Retaining only terms proportional to v in KDy, one obtains the 
approximation 

dr [U(t, to; T ) -  1]} (2.10) (U(t, to))(~)=~-~exp v 

This will be finite if, for [rl ~ ~ ,  one has ~o(t; T) ~ 0 sufficiently fast so that 
the integral in Eq. (2.10) exists. 

For commuting single pulses one has that U(t, to; r~ ..... Tn) factorizes, 
and then U K -  = 0 for n/> 2, by the cluster property. In the commuting case 
the first order is already the exact solution. One can then omit the time- 
ordering ~ in Eq. (2.10), and the result agrees with Eq. (1.22) and with the 
well-known result for the scalar case. (2) 

For the general case the second-order approximation is obtained by 

(2.11) 

retaining only v and v 2 terms in KDy, 

(U(t, to)) (2~ 

UK(t, to; T1, v2)= U(t, to; T~, T2)- U(t, to; zl) U(t, to; ~2) (2.12) 

where 

3. EXPANSION BASED ON A DIFFERENTIAL EQUATION 

In this section we explicitly determine each term Kn(t, to) in the expan- 
sion of K(t, to) in Eq. (1.20). To this end, we consider a finite interval 
[Zo, T] of arrival times and study the ansatz 

d 
( U(t, to)lTo, z)  = K(t, to; Zo, z)( U(t, to)i-Co, z)  (3.1) 
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where (U(t ,  to)l Zo r ) is given by Eq. (2.3). Later we let -Zo,  r ~ oo. Using 
Eq. (2.2), we define 

1 
f dnr U(t, to; r,,..., %) (3.2) Un : = ~  [~0,& 

We suppress the dependence of K on t, to, %, r and consider an expansion 
analogous to Eq. (1.20), 

K= Z K.v" (3.3) 

Inserting Eq. (2.3) into Eq. (3.1) gives, with Eqs. (3.2) and (3.3), 

~v"(Jn=(~v~K~)(l+~ v~U~ (3.4) 

Comparing equal powers of v, one obtains 

n--1 
5 . = K . +  ~ KjU. j (3.5) 

j-1 

This is a recursive relation for K.. One finds for n = 1 and n = 2 

K, = U, = &l  q~(t; r ,)  U(t, to; r , )  (3.6) 
0 

/(2 = r - r U, 

f;  f.rrO dr 2 {~. = dr, 1 [_qg(t;rl)+~o(t;r2)] U(t, t o ; r , , r2 )  
o 

- ~o(t; "Cl) U(t, to; z,) U(t, to; r2)} 

A change of variables ~o(t;r2)-+q~(t;h) and the symmetry of U(t, to; 
h ,  %) yields 

K 2 = dr, dT 2 ~p(t; rl) 
0 

x [U(t, to; ~1, % ) -  U(t, to; rl) U(t, to; r2)] (3.7) 

For K 3 o n e  can proceed similarly, and this suggests as general solution 

1 
[ d"x q~(t; %) UK(t, to; r, ..... %) 

K " = ( n - 1 ) !  oil0,& 
(3.8) 
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where the U K a r e  K-cumulants of U(t, to; rt ..... %) with respect to rl,..., %. 
Proof is by induction. Assume this to hold for n - 1. Then, from Eq. (3.5) 
and by a change of variables in the time-derivative term as before, one 
obtains 

K, = J[,o,& d"~ 1)! qfft; rt) U(t, to; % ..... %) 

r t - - I  1 

-q~( t ; r l )  ~ (c~- 1)-----~ uK(t' t o ; ' ~ l  . . . . .  Tc~) 

' 1 to;  +l ..... 

(n 1)! E,o,~~ 

1 uK(t, to;Z1 ..... G) U(t, t o ; G+ !  ..... %) (3.9) 
C~=1 

Now we use as a crucial fact that U K is symmetric in r2 ..... ~,, n ~> 2, i.e., 

uK(t, to; rl ..... %) = uK(t, to; r l ,  %(2),'", r~(,)) (3.10) 

for any permutation of (2,..., n). This follows from the symmetry of U(t, to; 
rl,..., G) and from the recursive relation for U K in Eq. (1.8) of I by 
induction. 

For A =  {21 ..... 2,,}, 2 1  < " ' "  </~rn, we denote 

There are ("m 1) different ways to select m numbers from {2,...,n}. By 
symmetry we can therefore write Eq. (3.9) as 

1 d"x q~(t; %) [U(t, to; rl,..., %) 
K.=(n  1 )-----~.~ fE~o, & 

- 5" u (t, to; U(t, to; %)]  
At ~ A2= {2,...,n} A 

where A2r  ~ .  The square brackets just give uK(t, to; r I ..... %), by 
Eq. 0.1.8). This proves Eq. (3.8). 

Now it is possible to perform the limit %-+ -o% r--* oo in Eq. (3.1). 
If, for fixed t, ~o(t; r) vanishes outside a finite r interval or if it approaches 
zero sufficiently rapidly, then q~(t; rl)  uK(t, to; Zl ..... %) will be integrable. 
For n = 1 this is evident and for n >~ 2 this follows from the cluster property. 
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Indeed, if Ti ~ ~ ,  i ~> 2, we can assume i = n, by symmetry, Eq. (3.10). The 
U(t, to; T.) ~ 1 and 

U(t, to; rl ..... z,) ~ U(t, to; T1 ..... z~_l) U(t, to; T,) 

Hence, U K ~ 0 for n >/2. For [To, v] ~ ~, K(t, to; To, r) becomes 

1 
dn~c ~p(t, ~1) U(t, to; Tj,..., %) (3.11) K(t't~ ~ Vn(n 1)-----~ 

and Eq. (3.1) becomes 

d 
dt < U(t, to)> = K(t, to)< U(t, to)> (3.t2) 

In order for this to hold, one only needs that the left-hand side of Eq. (3.1) 
converges in the limit [~o, T] --, ~. 

From the uniqueness of K(t, to) and of its expansion in powers of v it 
follows that v"K,, coincides with the partial sums of Section 1. 

In the case of commuting single pulses, U(t, to; T{,..., %) factorizes into 
1~ U(t, to; Ti), so that one has U K= 0 or n/> 2, and therefore the first-order 
approximation already gives the exact result. It then agrees with Eq. (2.10) 
and with the classical result for the scalar caseJ 2) 

4. EXPANSION OF THE INTEGRAL KERNEL 

We now derive an alternative density expansion for quantum shot 
noise, of which Eq. (1.11) is the first term. To this end, we return to the 
expression for (U(t, to)lToZ> in Eq. (2.3). The difficulty is that the limit 
T ~  ~ cannot be performed directly, since then the integrals diverge and 
e x p ( - v T ) ~ 0 .  To obtain a better behaved expression, we also expand 
e x p ( -  vT) into a power series and collect equal powers of v. This gives 

< U(t, to)l To, v> 

= ~,=o ~+#~=, ~-T~ "v(-1)~T~v~+# 

x f d#x U(t, to; rl ..... T#) 
[~oT]# 

= v n d n ~  

n=0 ~.I z0,z]n 

x fl! (n-fl)!  ( - 1 ) " - #  g(t '  to; rl ..... r#) (4.1) 
B=O 
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where T ~ has been replaced by a trivial ~-fold integral. We now symmetrize 
the integrand in Eq. (4.1). Since there are (~) ways to select fl different 
numbers from 1 ..... n, the symmetrized integrand, which we denote by U s, 
becomes 

us(t, fo;~,,...,~.)= ~ ( -1)  "-~AI u(t, to ;~)  (4.2) 
A ~ {1,.... n} 

where for the empty subset we set U ( ~ )  := 1 and where 1A] denotes the 
number of elements in the set A. In particular, 

US(q) = U ( q ) -  1 
(4.3) 

U~(q, r2)= U(~, ~2)- U ( q ) -  U(~2)+ 1 

If the single-pulse shape r ~) vanishes for ~ ~ _ ~ ,  then 

US(t, to ; r l , . . . , z , )~O as r~--* + ~  (4.4) 

This is evident in Eq. (4.3) and it follows for the general case by induction 
based on the formula 

u(,1 ..... , .)  = ~ us(,A) (4.5) 
A = {1,..., n} 

obtained from Eq. (4.3) by summation. See also ref. 9. By Eq. (4.4), the 
limit *o, * ~ -+~ in 

<U(t, t o ) l % , r > -  ~o.~] d~TUS(t, to;r~ ..... r,) (4.6) 
0 

can now be taken explicitly if the single-pulse shape vanishes sufficiently 
rapidly. We set 

1 
U3,(t, t o ) : = ~  J~~ d'~ US(t, to; ~1,..., %) (4.7) 

Then Eq. (4.6) becomes 

<U(t, to)> : ~  ~ s v U, (t, to) (4.8) 

Now it is possible to determine the expansion of the integral kernel G~. 
By Eqs. (1.6)-(1.10), the lhs of Eq. (4.8) equals 

1 + ds v~G~(t, s) v/7 s o U, (~, to) 
0 , ~ : I  17=0 
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Comparing equal powers of v, we obtain a recursion relation for G., 

U.(t, to) = ds G.(t, s) + ~ G~(t, s) U~_~(s, to) (4.9) 

This is simplified by introducing 

so that 

H,(t, s) := ds' G,(t, s') (4.10) 

G,(t, s)= - - ~ H , ( t ,  s) (4.11) 

By partial integration, Eq. (4.9) then becomes a uniquely solvable recursion 
relation for H,, 

H.( t, to ) = U, (t, to) - - - 6  ds Ha(t, s) -~s U,_~(s, to) (4.12) 
~ = 1  0 

For n =  1 we recover Eq. (1.11), 

Hi(t, to)= U~(t, to)= ~ dz [U(t, to; z ) -  1] 

(4.13) 

Gl(t, s) = j dr U(t, s; r) ~0(s; r) 

We will give a closed expression for G, in the stationary case, which is 
of main interest for applications. 

The  S t a t i o n a r y  Case .  If the single-pulse contribution depends on 
the time difference only, 

~o(t; r) = ~o(t - ~) (4.14) 

then the process V(t) is stationary, and 

G,(t, s) = G,(t - s) 

since the same holds for G~. Now, Eq. (4.9) is easily solved in terms of 
Laplace transforms, 

d . ( p )  = at e - . '  ~.(t) 
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Putt ing to = 0 and Laplace- t ransforming  Eq. (4.9), we obta in  

n - - 1  

O =I d.+ Z 
P ~I 

Since U,(0 ,  0 ) = 0 ,  this can be writ ten as 

n 1 

Un=Gn+ • G~U,_~ (4+15) 
C~=I  

The solut ion is immediate ly  seen to be 3 

( ~ , =  Z ( - 1 )  k - 1 U ~  . . .  U,~ (4.16) 
n l +  . . . n k = n  

where ni~> 1. For  n = 1 we obta in  

G, = ~p {f d3 q)(t- ,) U(t, O; ~)} (4.17) 

f rom which Eq. (1.14) follows. F o r  n = 2  we obtain,  with Eqs. (4.3) and 
(4.7), 

d2= Y~p (~ f d2x { [q)(t- rl) + ~o(t- r2)] U(t, O; *l, r2) 

--(P(/--%'l) U(t, O; Vl)--cP(t--~2) U(t, O; z2)}) -d2  (4.18) 

By a change of variables this can be writ ten as 

G2= ~p {f derq3(t-3,)[U(t, 0;T1, " [ '2) -U( t ,  0; r l ) ] } - G  2 (4.19) 

in the limiting case of f- l ike pulses, the f irst-order app rox ima t ion  to 
Gt becomes exact, also in the nons ta t iona ry  case. Fo r  

q)(t; 3) = ~b(r) 6(t-3) (4.20) 

one can show by means  of Eq. (4.9) that  

Gi(t, s) = VGl(t, s) = v[e ~(s)- 1] (4.21) 

3 It is interesting to note a connection of Eq. (4.15) with W-cumulants. If we set 
Oa(0~ + 1 ..... n) := "a U,_~ then Eq. (4.15) becomes identical to the recursion relation (1.1.4) for 
W-cumulants, so that (~ = (Ua(1 ..... n) w. From this, Eq. (4.16) also follows, by Eq. (1.21.6). 

822/51/'3-4-26 
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The integral equation then gives 

(U(t ,  t o ) ) = J - e x p  v 
0 

Hegerfeldt and Schulze 

dt' [e o(c) - 1] t (4.22) 

For stationary 6-pulses one has commutativity and a special scalar case. 
We note that e ~ is a sort of "S-matrix" for a pulse occurring at time r. 

APPENDIX .  C A L C U L A T I O N  OF (V(t l ) '"V(t . ) )  FOR 
Q U A N T U M  S H O T  NOISE 

The correlation functions can be obtained by specializing a more 
general method of ref. 10. It is, however, instructive to use a more 
pedestrian approach, such as the following. We consider N arrival times, 
which are uniformly distributed in a finite interval [ - T/2, T/2] with fixed 
N / T =  v. Eventually, we will let N, T ~  ~ .  Writing ~o~(t) - q~(t; "~i) o n e  has 

N 

1 

As an example, we first calculate 

(V( tx)  V(t2) V(/3)) = ~'~ (q)i~(tl) (pi2(t2) qoia(t3)) (A.1) 
il, i2, i3 

This is decomposed into terms according to the number of different arrival 
times, leading to 

(q~il(tl) q)i,(t2) (P,-l(t3)) 
il 

+ E ((1~il ( /1)  q~/1 ( t2)  (Pi2 ( t3)  
il ~ i2 

"q-q~il(tl) q~i2(t2) (Pil(t3)"q-q)/t(tl) q~i2(t2) q~i2(t3)) 

+ ~ (q~,~(tl) q~2(t2) ~o,3(G)) (A.2) 
ik ~ i/ 

The numbers of ( . )  terms in the sums are N, N ( N - 1 ) ,  and 
N(N--1)(N--2), respectively, and each summand is independent of the 
particular value of il ,  i2, i3. Hence, 



Quantum Shot Noise 727 

(v(t,) v(t~) v(t,)) 

~ T/2 d~ 1 
= N ~_ r/2 T (P(ti; "el ) q~(t2 ; ~'1 ) q~(t3 ; Z'I ) 

T/2 d.Cl f T/2 dz 2 
+ N(N--1) f T / 2 T  JT/2 T { ( P ( I 1 ; Z l ) q g ( I 2 ' Z l ) f P ( t 3 ; Z 2 )  

+ tP(tl ;Zl) (P(t2 ;z2) q~(t3 ; 'e l )+ qg(tl ;zl)  (P(t2 ; z2) ~o(t3 ;~2)} 

f 3 d.cc t +N(N--  1)(N--2)  3 1-] T ~o(t~; z~) (A.3) 
[ -- T/2, T/2 ] ~=1 

In the limit T--, Go this becomes 

(v(t~) v(t~) v(t~)) 
3 

=vfa~ 1-I ~o(t~;~) 

+ v2 1 d2x ~o(tl ; r l)  I-9(t2; ~1) (P(/3 ; ~'2) 

+ r.P(t2 ; "C2) (p(t3 ; "Cl) + qg(t2; Z2) qg(t3 ; 1:2) ] 
3 

+ v3 ]-I f dz~ ~o(t~, ~) (A.4) 

For later applications to the general case we return to Eq. (A.2) and 
symmetrize its summands ( . )  by permutations of the indices. The result 
can be written as 

3 1 
m2_ Y, 

=1 ik~i I Uk=l{CZj}={l,...,m} 
(qg,,,(tl) q~,,2(t2) q~,,3(t2)) (A.5) 

Arguing as before, this yields in the limit T ~ 

(V(tl) v(t:) v(t~)) 

3 i 1 = ~ v m dmZ m! 
r n = l  U3= 1 {cr = {1 ...... } 

q~(tl; z~)(P(t2; %2) q~(t3; z~3) (A.6) 

which is Eq. (A.4) with integrands symmetrized. 
For ( V ( t l ) . . .  V(t,)) we proceed similarly. The analog of Eq. (A.1) is 

again decomposed into sums according to the number of different arrival 
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times, and their summands are symmetrized by permutations of the indices. 
This yields as an analog of Eq. (A.5) 

( v(t,).. ,  v(t.)) 

1_!_ 
= ~ vm Z m! Z (qgi, l(tl)...~oi~(t,) ) ( A . 7 )  

m = l  ik=~il U~I=I {~j} : { 1 ...... } 
which can be proved in this symmetrized form by induction. For fixed m 
the number of summands ( - )  in each ~ik~i~ is N ( N - 1 ) . . . ( N - m +  1), 
and each summand is independent of the particular value of il ..... im. This 
gives an analog of Eq. (A.3) for finite T, and in the limit T--* ~ one 
obtains 

( V ( / 1 ) . . .  V(tn)) 

= ~ •mf drnT~.. Z ~0(tl; r~l)'''~0(t,; r~~ ( A . 8 )  
n m = l  Uj=I{  j} = { l , . . . ,m} 

The number of terms in each integrand can be reduced, if one wishes, 
by redoing the symmetrization. Identifying distributions of indices C~l,..., ~,, 
that differ only by a permutation, one can get rid of the m! in Eq. (A.8) and 
obtain 

(v( t~) . . .v( t . ) )  

--- ~, V m f dm'C ~ q)(t'l; z=,)...q~(t,; z=.) (A.9) 
m = l  U/_I  {~j} = {1 . . . . . .  } 

rood perm. 

For n = 3 this reduces again to Eq. (A.4). 
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